

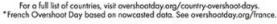
Utilization of Recycled Materials (CDM) in the Cement Industry

HOLCIM DEUTSCHLAND

Dr. Thorsten Haase and Dr.-Ing. Kaleb Yared, August 2023

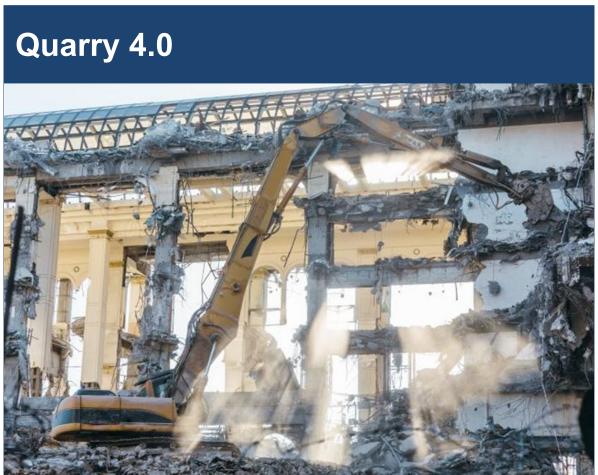
MOTIVATION & HINTERGRUND

Earth Overshoot Day


Country Overshoot Days 2023

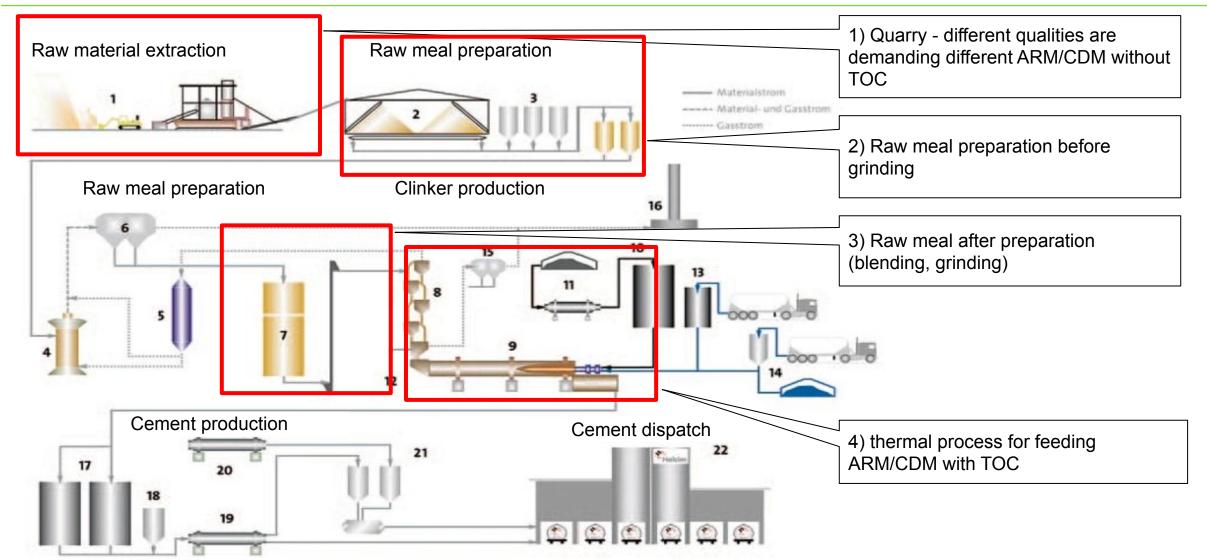
When would Earth Overshoot Day land if the world's population lived like...

Source: National Footprint and Biocapacity Accounts, 2022 Edition data.footprintnetwork.org

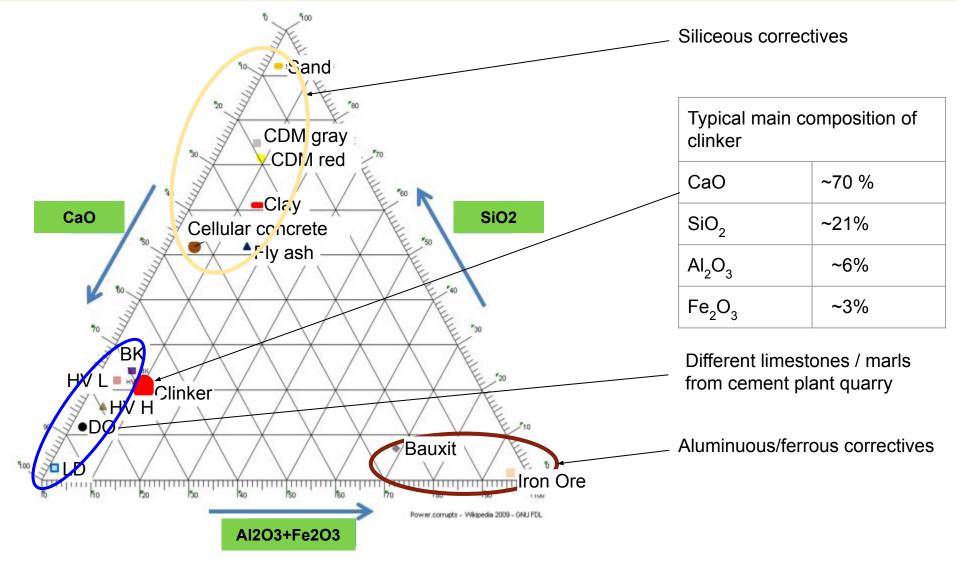


MOTIVATION & HINTERGRUND

Alternative Raw Material Sources

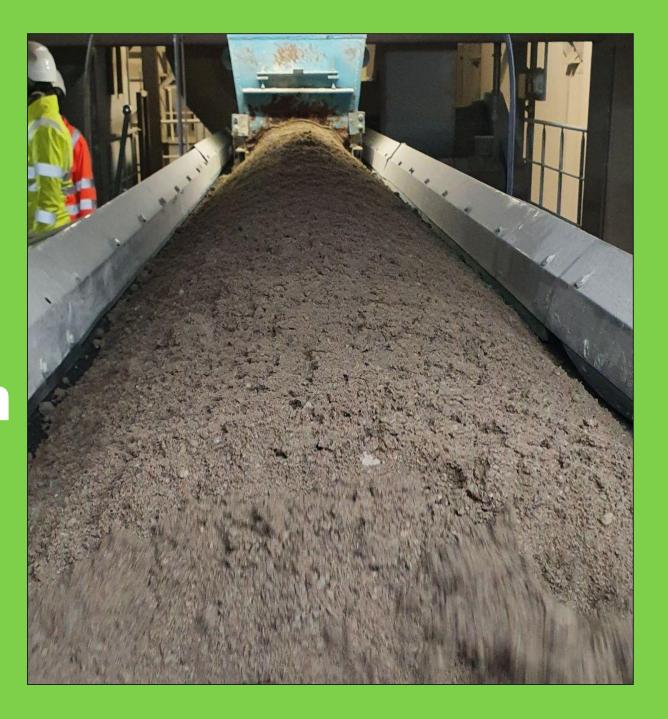


CDM / ARM in Clinker Production

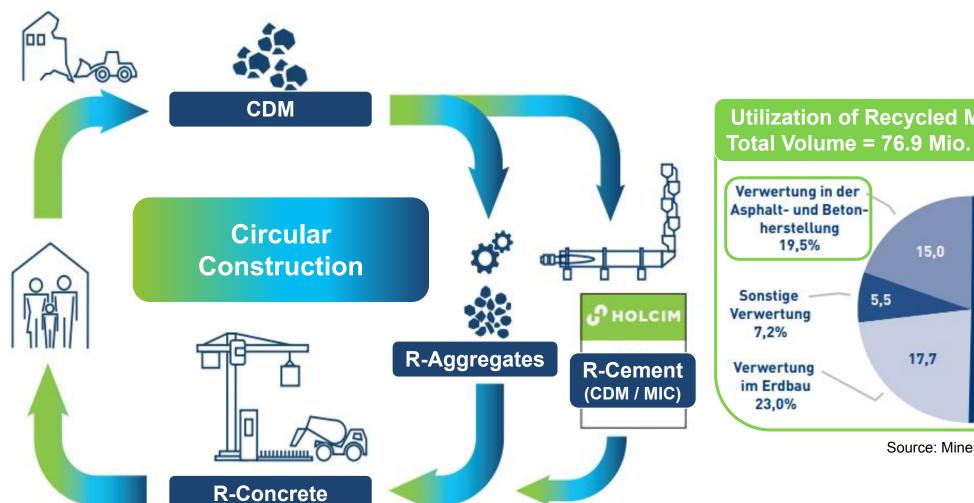


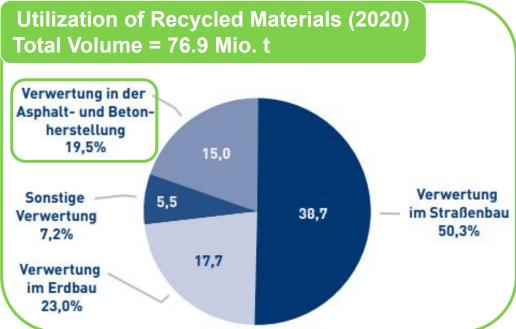
Possible Feed of CDM / ARM into the Clinker Production Process

Tertiary Diagram for the Clinker Chemistry Quarry Material Dictate Quantity and Quality of Correctives


Co-processing CDM / ARM in Clinker Production

Pre-processing


- Sorting, crushing
- Quality control and assurance
 - Chemical composition meeting clinker chemistry
 - Grain size
- Process stability
 - moisture
 - chloride
 - sulfur
- Storage and feeding (investments)
 - continuity in volume and quality



CDM / MIC as Main Constituent in Cement Production

Circularity (Up-cycling) in the Cement and Concrete Industry

Source: Mineralische Bauabfälle Monitoring 2020

Recycled Aggregates in Concrete Material Compositions (M.-%) and Types

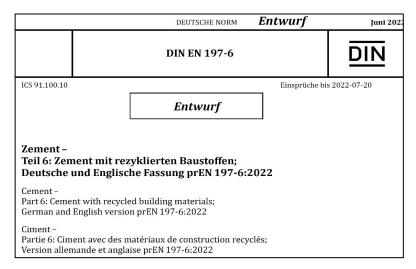
Material Compo	sitions ¹⁾	Type 1	Type 2			
Rc + Ru Concrete, Aggregate		≥ 90	≥ 70			
Rb	Brick	≤ 10	≤ 30			
Ra	Asphalt	≤ 1	≤ 1			
X + Rg	Rest Materials	≤ 1	≤ 2			
FL		≤ 2	≤ 2			

¹⁾ DIN EN 12620, Table 1 (excerpt)

Only RC-Aggregates > 2 mm are allowed to be used in concrete!

Recycled Materials as MIC in Cement

R-Cement Production Concept


CDM Processing @Recycling Centers

Drying and Grinding @Cement Plant

R-Cement Production @Cement Plant

Recycled Materials as MIC in Cement prEN 197-6 cement with recycled concrete fines

Definition Recycled MIC

- Selected and processed mineralic material
- Production in a recycling facility producing recycled aggregates for concrete

Requirements of Recycled MIC

- TOC-Content ≤ 0,8 M.-%
- Methylene blue ≤ 1,2 g/100g
- SO3-Content ≤ 2,0 M.-%

Constituents and Compositions

Main types			Composition (percentage by mass) *											
	Notation of the products (types of cement)		Main constituents											
				Recycled concrete fines	Blast- furnace slag	Silica fume	Pozzolana		Fly ash					Minor additional
							natural	natural calcined	siliceous	calcareous	Burnt shale	Limestone		constituents
	Type name	Type notation	К	F	s	Dp	P	Q	v	w	т	L¢	LL c	
CEM II	Portland- recycled- fines cement	CEM II/A-F	80-94	6-20	=	-	-	-	1	-	-	-	-	0-5
		CEM II/B-F	65-79	21-35	-	-	-	ş —	-	7 - 7	-	-	-	0-5
	Portland- composite cement ^d	CEM II/A-M	80-88	6-14	6-14							0-5		
		CEM II/B-M	65-79	6-29	6-29							0-5		
		CEM II/C-M	50-64	6-20	(0-5	
CEM VI	Composite cement	CEM VI	35-49	6-20	31-59	-	-	-	-	_	-	_	-	0-5

The values in the table refer to the sum of the main and minor additional constituents

In case of the use of silica fume, the proportion of silica fume is limited to 6 % to 10 % by mass.

In case of the use of limestone, the proportion of the sum of limestone and recycled concrete fines (sum of L, LL and F) is limited to 35 % by mass.

The number of main constituents other than clinker is limited to two and these main constituents shall be declared by designation of the cement (for examples, see Clause 6). In case of the use of both F and (I. or LL) in the composition, the number of main constituents other than clinker is limited to three and these main constituents shall be declared by designation of the cement.

Recycled Materials as MIC in Cement Challenges to Urgent Adoption

Germany

A special technical approval (abZ) is required for R-Cements for usage in concrete:

- For each cement type
- For each cement plant

ECCycle®

Switzerland

Susteno

- the resource saving cement
 - Cement type nach SIA 2049: CEM II/C-M (T-F) 42,5 N
 - Approved for all exposure classes
 - RC-MIC composition of Type 2

SUSTENO 4

IN KONTAKT BLEIBEN

Dr. Thorsten Haase

Business Development & Co-processing Geocycle (Deutschland) GmbH +49 151 6282 4943 thorsten.haase@geocycle.com

Dr.-Ing. Kaleb Yared

Leiter Projektmanagement & Produktentwicklung Holcim (Deutschland) GmbH +49 173 968 6272 kaleb.yared@holcim.com

HOLCIM